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Abstract 
In this paper we establish results on the existence and uniqueness of coupled fixed points of Geraghty 

contraction on a partially ordered set with a metric, with the continuity of the altering distance function dropped. 

Our results are improvements over the results of GVR Babu and P.Subhashini [3]. 
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I. Introduction 
Delbosco [8] and Skof [23] introduced the concept of an altering distance function, which alters the 

distance between two points in a metric space. This technique is made famous by Khan, Swaleh and Sessa [15]. 

Afterwards many researchers [2, 6, 9, 10, 15, 22] applied this concept to obtain the existence of fixed points. 

Also, G.V.R. Babu and P. Subhashini [3] applied this concept to obtain coupled fixed point via Geraghty 

contraction. 

Throughout this paper ℝ+ denotes the interval  0,∞ . 
 

II. Preliminaries 
Notation: Let Ф =  𝜑:ℝ+ → ℝ+/φ is non decreasing and φ 𝑡 = 0 ⇔ 𝑡 = 0   
 

Definition 2.1: [23] 𝝋 ∈ Ф is called an altering distance function if 𝜑 is continuous. 

 

Definition 2.2: [14] Let (𝑋, ≤) be partially ordered set and 𝐹: 𝑋 × 𝑋 → 𝑋 be a map. We say that 𝑓 has the 

mixed monotone property if 𝐹(𝑥, 𝑦) is non-decreasing in 𝑥 and is non-increasing in𝑦. 

i.e. 𝑥1 , 𝑥2 ∈ 𝑋, 𝑥1 ≤ 𝑥2 ⇒ 𝐹(𝑥1 , 𝑦) ≤ 𝐹(𝑥2 , 𝑦) and 𝑦1 , 𝑦2 ∈ 𝑋, 𝑦1 ≤ 𝑦2 ⇒ 𝐹(𝑥, 𝑦1) ≥ 𝐹(𝑥, 𝑦2). 

 

Definition 2.3: [12] Let (𝑋, ≤) be a partially ordered set and 𝐹: 𝑋 × 𝑋 → 𝑋 be a map. For any𝑥, 𝑦 ∈ 𝑋. A point 

(𝑥, 𝑦) ∈ 𝑋 × 𝑋 is called a coupled fixed point of 𝐹 if 𝑥 = 𝐹(𝑥, 𝑦) and   𝑦 = 𝐹(𝑦, 𝑥). 

Define the partial order ≤1 on 𝑋 × 𝑋 as follows:  

 𝑥, 𝑦 ≤1  𝑢, 𝑣  𝑖𝑓 𝑥 ≤ 𝑢  𝑎𝑛𝑑 𝑦 ≥ 𝑣  ∀ 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋. 

We say that (𝑥, 𝑦) and (𝑢, 𝑣) are comparable, if either  𝑥, 𝑦 ≤1  𝑢, 𝑣  or  𝑢, 𝑣 ≤1  𝑥, 𝑦  
We denote the class of all altering distance functions 𝜑:ℝ+ → ℝ+ by Ф. We use the following notation as 

mentioned in [11] to define Geraghty contraction. 

𝑆 =  𝛽: ℝ+ →  0,1 / β 𝑡𝑛 → 1 ⇒ 𝑡𝑛 → 0  
 

Definition 2.4: [11] Let (𝑋, 𝑑) be a metric space. A self map 𝑓: 𝑋 → 𝑋 is said to be a Geraghty contraction if 

∃ 𝛽 ∈ 𝑆 such that 𝑑 𝑓 𝑥 , 𝑓 𝑦  ≤ 𝛽 𝑑 𝑥, 𝑦   𝑑 𝑥, 𝑦  ∀ 𝑥, 𝑦 ∈ 𝑋 

 

Remark 2.5: It is trivial to see that every contraction map is Geraghty contraction. The following example 

(GVR Babu and P Subhashini [3]) shows that a Geraghty contraction need not be a contraction. 
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Example 2.6: [3] Let 𝑋 = ℝ+ with usual metric. We define 𝑓: 𝑋 → 𝑋 by 𝑓 𝑥 =
𝑥

1+𝑥
 ∀ 𝑥 ∈ 𝑋 and 𝛽: ℝ+ →

 0,1  by 𝛽 𝑡 =  
2

2+𝑡
  𝑖𝑓  𝑡 > 0

0      𝑖𝑓  𝑡 = 0
  

Then clearly 𝛽 ∈ 𝑆. We observe that 𝑓 is a Geraghty contraction. For,    

𝑑 𝑓 𝑥 , 𝑓 𝑦  =  
𝑥

1 + 𝑥
−

𝑦

1 + 𝑦
 =

 𝑥 − 𝑦 

 1 + 𝑥  1 + 𝑦 
≤

2 𝑥 − 𝑦 

2 +  𝑥 − 𝑦 
= 𝛽 𝑑 𝑥, 𝑦   𝑑 𝑥, 𝑦  ∀𝑥, 𝑦 ∈ 𝑋  

But 𝑓 is not a contraction. 

The following theorem is proved in [11]. 

 

Theorem 2.7 (Geraghty, [11]): Let 𝑓: 𝑋 → 𝑋 be a self map of a complete metric space 𝑋.           If ∃ 𝛽 ∈ 𝑆 such 

that 𝑑 𝑓 𝑥 , 𝑓 𝑦  ≤ 𝛽 𝑑 𝑥, 𝑦  𝑑 𝑥, 𝑦  ∀ 𝑥, 𝑦 ∈ 𝑋, then for any choice of initial point 𝑥0, the iteration 

𝑥𝑛 = 𝑓(𝑥𝑛−1) for 𝑛 = 1,2,3, …  converges to the unique fixed point 𝑧 of   𝑓 in 𝑋. 

In 2010 Amini-Harandi and Emami [1] extended Theorem 2.7 to complete metric spaces with partial 

order. 

 

Theorem 2.8 [1]: Let  𝑋, ≤  be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that  𝑋, 𝑑  is a 

complete metric space. Let 𝑓: 𝑋 → 𝑋 be an increasing mapping and ∃ 𝛽 ∈ 𝑆 

such that 𝑑 𝑓 𝑥 , 𝑓 𝑦  ≤ 𝛽 𝑑 𝑥, 𝑦   𝑑 𝑥, 𝑦  ∀ 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≥ 𝑦.  

Assume that either (i) 𝑓 is continuous or (ii) 𝑋 is such that if  𝑥𝑛  an increasing sequence 𝑥𝑛 → 𝑥 in 𝑋, then 

𝑥𝑛 ≤ 𝑥  ∀ 𝑛. 

Besides suppose thatif for each 𝑥, 𝑦 ∈ 𝑋, ∃ 𝑧 ∈ 𝑋 which is comparable to 𝑥 and 𝑦. Then 𝑓 has a unique fixed 

point.   

 Guo and Lakshmikantham [13] introduced the mixed monotone operators. In 2006, Gnana Bhaskar and 

Lakshmikantham [12] established the existence of coupled fixed points for mixed monotone operators in metric 

spaces with partial order. For more literature on the existence of coupled fixed points of different contraction 

conditions in partially ordered metric spaces, we refer [4, 7, 14, 16, 18, 19, 20, 21].   

 

Definition 2.9: [12] Let 𝑋 be a non-empty set and 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping. An element  𝑥, 𝑦 ∈ 𝑋 × 𝑋 is 

said to be coupled fixed point of 𝐹 if 𝐹 𝑥, 𝑦 = 𝑥 and 𝐹 𝑦, 𝑥 = 𝑦. 

The following theorem is due to Gnana Bhaskar and Lakshmikantham [12]. 

 

Theorem 2.10: [12] Let (𝑋, ≤) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 

complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed monotone property on 𝑋. Assume that 

there exists 𝑘 ∈ [0,1) such that  

𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣) ≤
𝑘

2
 𝑑 𝑥, 𝑢 + 𝑑(𝑦, 𝑣)                                                                                                ……  (1) 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 with 𝑥 ≥ 𝑢, 𝑦 ≤ 𝑣. 

Also suppose that either (i) 𝐹 is continuous   or (ii) 𝑋 has the following properties: 

(a) If  𝑥𝑛  is a non-decreasing sequence in 𝑋 with 𝑥𝑛 → 𝑥, then 𝑥𝑛 ≤ 𝑥 ∀ 𝑛 ∈ 𝕫+ 

(b) If  𝑦𝑛  is a non- increasing sequence in 𝑋 with 𝑦𝑛 → 𝑦, then 𝑦𝑛 ≥ 𝑦 ∀ 𝑛 ∈ 𝕫+ 

 If ∃ 𝑥0 , 𝑦0 ∈ 𝑋 such that 𝑥0 ≤ 𝐹(𝑥0 , 𝑦0) and 𝑦0 ≥ 𝐹(𝑥0 , 𝑦0), then ∃ 𝑥, 𝑦 ∈ 𝑋 such that           𝑥 = 𝐹 𝑥, 𝑦  and 

𝑦 = 𝐹 𝑦, 𝑥  
Recently Choudhury and Kundu [5] extended Theorem 2.7 to Geraghty contractions in the context of 

coupled fixed points in metric spaces with partial order.  

 

Theorem 2.11: [5] Let (𝑋, ≤) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 

complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed monotone property on 𝑋. Assume that 

there exists 𝛽 ∈ 𝑆 such that  

𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣) ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
  

𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
                                                                                   …… (2) 

whenever 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 and  𝑥, 𝑦  and (𝑢, 𝑣) are comparable.. 

Also suppose that either (i) 𝐹 is continuous   or (ii) 𝑋 has the following properties: 

(a) If  𝑥𝑛  is a non-decreasing sequence in 𝑋 with 𝑥𝑛 → 𝑥, then 𝑥𝑛 ≤ 𝑥 ∀ 𝑛 ∈ 𝕫+ 

(b) If  𝑦𝑛  is a non- increasing sequence in 𝑋 with 𝑦𝑛 → 𝑦, then 𝑦𝑛 ≥ 𝑦 ∀ 𝑛 ∈ 𝕫+ 

If ∃ 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑥0 ≤ 𝐹(𝑥0 , 𝑦0) and 𝑦0 ≥ 𝐹(𝑥0 , 𝑦0), then 𝐹 has a fixed point. That is ∃ 𝑥, 𝑦 ∈ 𝑋 such 

that 𝑥 = 𝐹 𝑥, 𝑦  and 𝑦 = 𝐹 𝑦, 𝑥 . 
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G.V.R. Babu and P. Subhashini [3] proved two theorems which extend the coupled fixed point results 

established by Gnana Bhaskar and Lakshmikantham [12] and Choudhury and Kundu [5], to the case of 

Geraghty contraction maps by using an altering distance function.  

 

Theorem 2.12 (GVR Babu and P Subhashini, Theorem 2.1, [3]): Let (𝑋, ≤) be a poset and suppose that there 

exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a continuous map 

having the mixed monotone property on 𝑋. Suppose there exists an altering distance function 𝜑 and 𝛽 ∈ 𝑆 such 

that  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣)  ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
 𝜑 max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)                                                         ……  (3) 

∀ 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 whenever  𝑥, 𝑦  and (𝑢, 𝑣) are comparable. 

If ∃ 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑥0 ≤ 𝐹(𝑥0 , 𝑦0) and 𝑦0 ≥ 𝐹(𝑥0 , 𝑦0), then 𝐹 has a coupled fixed point. That is ∃ 𝑥, 𝑦 ∈
𝑋 such that 𝑥 = 𝐹 𝑥, 𝑦  and 𝑦 = 𝐹 𝑦, 𝑥 . 
 

Theorem 2.13 (GVR Babu and P Subhashini, Theorem 2.2, [3]): Let (𝑋, ≤) be a poset and suppose that there 

exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a continuous map 

having the mixed monotone property on 𝑋. Suppose there exists an altering distance function 𝜑 and 𝛽 ∈ 𝑆 such 

that  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣)  ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
 𝜑 max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)                                                         ……  (4) 

∀ 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 whenever  𝑥, 𝑦  and (𝑢, 𝑣) are comparable.. 

Further assume that 𝑋 has the following properties: 

(a) If  𝑥𝑛  is a non-decreasing sequence in 𝑋 with 𝑥𝑛 → 𝑥, then 𝑥𝑛 ≤ 𝑥 ∀ 𝑛 ∈ 𝕫+ 

(b) If  𝑦𝑛  is a non- increasing sequence in 𝑋 with 𝑦𝑛 → 𝑦, then 𝑦𝑛 ≥ 𝑦 ∀ 𝑛 ∈ 𝕫+ 

If ∃ 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑥0 ≤ 𝐹(𝑥0 , 𝑦0) and 𝑦0 ≥ 𝐹(𝑦0 , 𝑥0), then 𝐹 has a coupled fixed point. That is, ∃ 𝑥, 𝑦 ∈
𝑋 such that 𝑥 = 𝐹 𝑥, 𝑦  and 𝑦 = 𝐹 𝑦, 𝑥 . 
 In this paper, we establish Theorem 2.12 and Theorem 2.13 without using the continuity of alter 

distance function 𝜑. 

 

III. Main results 

Theorem 3.1: Let (𝑋, ≤) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a metric 

space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed monotone property on 𝑋 and there exist 𝜑 ∈ Ф and 

𝛽 ∈ 𝑆 such that  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣)  ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
 𝜑 max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)                                                              … (5) 

For all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 whenever  𝑥, 𝑦  and (𝑢, 𝑣) are comparable.. 

Suppose ∃ 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑥0 ≤ 𝐹(𝑥0 , 𝑦0) and 𝑦0 ≥ 𝐹(𝑦0 , 𝑥0). Define the sequences  𝑥𝑛   and  𝑦𝑛   in 𝑋 by 

𝑥𝑛+1 = 𝐹(𝑥𝑛 , 𝑦𝑛) and 𝑦𝑛+1 = 𝐹(𝑦𝑛 , 𝑥𝑛) for all 𝑛 = 0, 1, 2, …  (6) 

Then  𝑥𝑛   is an increasing sequence,  𝑦𝑛  is a decreasing sequence and  𝑥𝑛  and  𝑦𝑛   are Cauchy sequences. 

 

Proof: First we prove that 𝑥𝑛 ≤ 𝑥𝑛+1 and 𝑦𝑛 ≥ 𝑦𝑛+1 for all 𝑛 = 0, 1, 2, …                                                         (7) 

and then we show that  𝑥𝑛   and  𝑦𝑛  are Cauchy sequences. 

We have 𝑥0 ≤ 𝐹(𝑥0 , 𝑦0) and 𝑦0 ≥ 𝐹(𝑦0 , 𝑥0) . 

Hence 𝑥0 ≤ 𝑥1 and 𝑦0 ≥ 𝑦1  

∴   (7) is true for 𝑛 = 0. 

Assume that (7) is true for some positive integer 𝑛. 

By using the mixed monotone property of 𝐹, we have  

𝑥𝑛+2 = 𝐹 𝑥𝑛+1, 𝑦𝑛+1 ≥ 𝐹 𝑥𝑛 , 𝑦𝑛 = 𝑥𝑛+1 and 𝑦𝑛+2 = 𝐹 𝑦𝑛+1, 𝑥𝑛+1 ≤ 𝐹 𝑦𝑛 , 𝑥𝑛 = 𝑦𝑛+1 

∴   (7) is true for 𝑛 + 1. 

Therefore by mathematical induction (7) follows. 

We now show that  lim𝑛→∞ max 𝑑 𝑥𝑛 , 𝑥𝑛+1 , 𝑑 𝑦𝑛 , 𝑦𝑛+1  = 0. 

We have 𝑥𝑛 ≤ 𝑥𝑛+1 and 𝑦𝑛 ≥ 𝑦𝑛+1 for all 𝑛 = 0, 1, 2, … 

Now 𝜑 𝑑 𝑥𝑛+1, 𝑥𝑛  = 𝜑 𝑑 𝐹 𝑥𝑛 , 𝑦𝑛 , 𝐹(𝑥𝑛−1, 𝑦𝑛−1)   

≤ 𝛽 𝑡𝑛  𝜑 max 𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑑 𝑦𝑛 , 𝑦𝑛−1                                                                                                     ….  (8) 

                                   ≤ 𝜑 max 𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑑 𝑦𝑛 , 𝑦𝑛−1    

𝜑 𝑑 𝑦𝑛 , 𝑦𝑛+1  = 𝜑 𝑑 𝐹 𝑦𝑛−1 , 𝑥𝑛−1 , 𝐹(𝑦𝑛 , 𝑥𝑛)   

≤ 𝛽 𝑡𝑛  𝜑 max 𝑑 𝑦𝑛−1 , 𝑦𝑛 , 𝑑 𝑥𝑛−1, 𝑥𝑛                                                                                                     ….  (9) 
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where 𝑡𝑛 =
𝑑 𝑦𝑛−1 ,𝑦𝑛  +𝑑 𝑥𝑛−1 ,𝑥𝑛  

2
     

                                  ≤ 𝜑 max 𝑑 𝑦𝑛−1, 𝑦𝑛 , 𝑑 𝑥𝑛−1, 𝑥𝑛    
From (8) and (9), we have 

max φ 𝑑 𝑥𝑛 , 𝑥𝑛+1 , 𝑑 𝑦𝑛 , 𝑦𝑛+1   ≤ 𝛽 𝑡𝑛  𝜑 max 𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑑 𝑦𝑛 , 𝑦𝑛−1    
Since 𝜑 is increasing, we get  

φ max  𝑑 𝑥𝑛 , 𝑥𝑛+1 , 𝑑 𝑦𝑛 , 𝑦𝑛+1   ≤ 𝛽 𝑡𝑛  𝜑 max 𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑑 𝑦𝑛 , 𝑦𝑛−1                                           … (10) 

If 𝛽 𝑡𝑛 = 0, for some 𝑛, then φ max  𝑑( 𝑥𝑛 , 𝑥𝑛+1 , 𝑑( 𝑦𝑛 , 𝑦𝑛+1   = 0 and hence from (10) we have 

φ max  𝑑 𝑥𝑚 , 𝑥𝑚+1 , 𝑑 𝑦𝑚 , 𝑦𝑚+1   = 0  𝑓𝑜𝑟   𝑚 ≥ 𝑛. 

Consequently max  𝑑 𝑥𝑚 , 𝑥𝑚+1 , 𝑑 𝑦𝑚 , 𝑦𝑚+1  = 0 for 𝑚 ≥ 𝑛 

So that lim𝑚→∞ max 𝑑 𝑥𝑚 , 𝑥𝑚+1 , 𝑑 𝑦𝑚 , 𝑦𝑚+1  = 0. 

Hence, we may suppose that 𝛽 𝑡𝑛 > 0  ∀ 𝑛                                                                                          ….…  (11) 

Again from non-decreasing property of 𝜑 and (10), we have  

 max  𝑑 𝑥𝑛 , 𝑥𝑛+1 , 𝑑 𝑦𝑛 , 𝑦𝑛+1  ≤ max  𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑑 𝑦𝑛 , 𝑦𝑛−1   
∴  max  𝑑 𝑥𝑛 , 𝑥𝑛+1 , 𝑑 𝑦𝑛 , 𝑦𝑛+1    is a non-negative and decreasing sequence of real and hence it converges to 

a real number 𝑟 (say) 𝑟 ≥ 0. 

Now, we prove that 𝑟 = 0. If possible suppose that 𝑟 > 0.  

Again from (10), we have 

𝜑 𝑎𝑛+1 ≤ 𝛽 𝑡𝑛 𝜑 𝑎𝑛  where 𝑎𝑛 = max  𝑑 𝑥𝑛 , 𝑥𝑛−1 , 𝑑( 𝑦𝑛 , 𝑦𝑛−1  ≥ 𝑟 > 0 

i.e 
𝜑 𝑎𝑛+1 

𝜑 𝑎𝑛  
≤ 𝛽 𝑡𝑛 < 1    ∵  𝜑 𝑎𝑛 > 𝜑 𝑟 > 0   

Let   𝜑 𝑎𝑛   decreases to 𝑠, where lim𝑛→∞ 𝜑 𝑎𝑛 = 𝑠. 

Now 𝑟 ≤ 𝑎𝑛+1 ⇒ 𝜑 𝑟 ≤ 𝜑 𝑎𝑛+1  ∀ 𝑛 ⇒  𝜑(𝑟) ≤ 𝑠 

Now 𝜑(𝑟) ≤ 𝑠 ≤ 𝜑(𝑎𝑛+1) ≤ 𝛽 𝑡𝑛 𝜑(𝑎𝑛)                                                                                           …..        (12) 

Case (i): 𝛽 𝑡𝑛 → 1. Then 𝑡𝑛 → 0   ∵   𝛽 ∈ 𝑆     

⇒ 
𝑑 𝑥𝑛 ,𝑥𝑛−1 +𝑑 𝑦𝑛 ,𝑦𝑛−1 

2
 → 0  

⇒ 𝑑 𝑥𝑛 , 𝑥𝑛−1 + 𝑑 𝑦𝑛 , 𝑦𝑛−1 → 0 ⇒ 𝑎𝑛 ≤ 𝑑 𝑥𝑛 , 𝑥𝑛−1 + 𝑑 𝑦𝑛 , 𝑦𝑛−1 → 0  ⇒ 𝑎𝑛 → 0 ⇒ 𝑟 = 0 

Case (ii): lim𝑛→∞ 𝛽 𝑡𝑛 ≠ 1.  

Then ∃ 𝜀 > 0 such that 𝛽 𝑡𝑛 < 1 − 𝜀 for infinitely many 𝑛. 

Then from (10), we have 𝜑 𝑟 ≤ 𝑠 ≤ 𝜑 𝑎𝑛+1 ≤ 𝛽 𝑡𝑛 𝜑 𝑎𝑛 ≤  1 − 𝜀 𝜑(𝑎𝑛) for infinitely many 𝑛. 

On letting 𝑛 → ∞, we get 𝜑 𝑟 ≤ 𝑠 ≤  1 − 𝜀 𝑠 ⇒ 𝑠 = 0 and 𝜑 𝑟 = 0 ⇒ 𝑠 = 0 and 𝑟 = 0. 

∴ 0 = 𝑟 = lim𝑛→∞ max  𝑑( 𝑥𝑛 , 𝑥𝑛+1 , 𝑑( 𝑦𝑛 , 𝑦𝑛+1                                                                                 ….  (13) 

Next, we have to prove that  𝑥𝑛   and  𝑦𝑛   are Cauchy sequences. 

If possible, assume that either  𝑥𝑛   or  𝑦𝑛   fails to be Cauchy. 

Then either lim𝑚,𝑛→∞ 𝑑 𝑥𝑚 , 𝑥𝑛 ≠ 0  or  lim𝑚,𝑛→∞ 𝑑 𝑦𝑚 , 𝑦𝑛 ≠ 0   

Hence max lim𝑚,𝑛→∞ 𝑑 𝑥𝑚 , 𝑥𝑛 , lim𝑚,𝑛→∞ 𝑑 𝑦𝑚 , 𝑦𝑛   ≠ 0 

i.e. lim𝑚,𝑛→∞ max lim𝑚,𝑛→∞ 𝑑 𝑥𝑚 , 𝑥𝑛 , lim𝑚,𝑛→∞ 𝑑 𝑦𝑚 , 𝑦𝑛   ≠ 0 

i.e ∃ 𝜀 > 0, for which we can find sub sequences  𝑚(𝑘)  and  𝑛(𝑘)  of positive integers with 𝑛(𝑘) > 𝑚(𝑘) >

𝑘 such that max  𝑑 𝑥𝑚(𝑘), 𝑥𝑛(𝑘) , 𝑑 𝑦𝑚(𝑘), 𝑦𝑛(𝑘)  ≥ 𝜀                                                                           …..   (14) 

Further, we choose 𝑛(𝑘) to be the smallest +ve integer such that 𝑛(𝑘) > 𝑚(𝑘) satisfying (14). 

Hence, we have max  𝑑 𝑥𝑚(𝑘), 𝑥𝑛(𝑘) , 𝑑 𝑦𝑚(𝑘), 𝑦𝑛(𝑘)  ≥ 𝜀 and  

max  𝑑 𝑥𝑚(𝑘), 𝑥𝑛 𝑘 −1 , 𝑑 𝑦𝑚(𝑘), 𝑦𝑛 𝑘 −1  < 𝜀                                                                                     ..…..    (15) 

Now, we prove that 

I:  lim𝑘→∞ max  𝑑 𝑥𝑛(𝑘), 𝑥𝑚(𝑘) , 𝑑 𝑦𝑛(𝑘), 𝑦𝑚(𝑘)  = 𝜀    

II: lim𝑘→∞ max  𝑑 𝑥𝑛 𝑘 −1 , 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  = 𝜀   

III:  lim𝑘→∞ max  𝑑 𝑥𝑚(𝑘), 𝑥𝑛 𝑘 −1 , 𝑑 𝑦𝑚(𝑘), 𝑦𝑛 𝑘 −1  = 𝜀       

First we prove I:- 

From the triangular inequality and (11), we have  

𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘  ≤ 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 + 𝑑 𝑥𝑛 𝑘 −1 , 𝑥𝑚(𝑘) < 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 + 𝜀                                     … (16) 

𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘  ≤ 𝑑 𝑦𝑛 𝑘 , 𝑦𝑛 𝑘 −1 + 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘  < 𝑑 𝑦𝑛 𝑘 , 𝑦𝑛 𝑘 −1 + 𝜀                                     … (17) 

From (14), (16) and (17) 

𝜀 ≤ max  𝑑 𝑥𝑛(𝑘), 𝑥𝑚(𝑘) , 𝑑 𝑦𝑛(𝑘), 𝑦𝑚(𝑘)  < max  𝑑 𝑥𝑛(𝑘), 𝑥𝑛 𝑘 −1 , 𝑑 𝑦𝑛(𝑘), 𝑦𝑛 𝑘 −1                            … (18) 

On letting 𝑘 → ∞, we get 

𝜀 ≤ lim
𝑘→∞

max  𝑑 𝑥𝑛(𝑘), 𝑥𝑚(𝑘) , 𝑑( 𝑦𝑛(𝑘), 𝑦𝑚(𝑘)  ≤ 𝜀 
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∴  lim
𝑘→∞

max  𝑑 𝑥𝑛(𝑘), 𝑥𝑚(𝑘) , 𝑑 𝑦𝑛(𝑘), 𝑦𝑚(𝑘)  = 𝜀 

∴   (I) holds. 

Now, we prove (II):- 

𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 ≤ 𝑑 𝑥𝑚 𝑘 −1 , 𝑥𝑚 𝑘  + 𝑑 𝑥𝑚 𝑘 , 𝑥𝑛 𝑘 −1  

                                  < 𝑑 𝑥𝑚 𝑘 −1, 𝑥𝑚 𝑘  + 𝜀   𝑏𝑦 (15)  

𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1 ≤ 𝑑 𝑦𝑚 𝑘 −1, 𝑦𝑚 𝑘  + 𝑑 𝑦𝑚 𝑘 , 𝑦𝑛 𝑘 −1  

                                  < 𝑑 𝑦𝑚 𝑘 −1, 𝑦𝑚 𝑘  + 𝜀    𝑏𝑦 (15)  

∴ max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  ≤ max 𝑑 𝑥𝑚 𝑘 −1 , 𝑥𝑚 𝑘  , 𝑑 𝑦𝑚 𝑘 −1, 𝑦𝑚 𝑘   + 𝜀 

∴  lim sup max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  ≤ 𝜀                                                                 …  (19) 

𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘  ≤ 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 + 𝑑 𝑥𝑛 𝑘 −1 , 𝑥𝑚 𝑘 −1 + 𝑑 𝑥𝑚 𝑘 −1, 𝑥𝑚 𝑘   

𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘  ≤ 𝑑 𝑦𝑛 𝑘 , 𝑦𝑛 𝑘 −1 + 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1 + 𝑑 𝑦𝑚 𝑘 −1, 𝑦𝑚 𝑘    

∴ max 𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘  , 𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘   ≤ max 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑛 𝑘   + 

         max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  + max 𝑑 𝑥𝑚 𝑘 −1, 𝑥𝑚 𝑘  , 𝑑 𝑦𝑚 𝑘 −1, 𝑦𝑚 𝑘    

Letting 𝑘 → ∞, from (12), we get 

0 ≤ lim inf max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1   

  ≤ lim sup max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1   

  ≤ 𝜀 

∴  lim max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1 , 𝑦𝑚 𝑘 −1  = 𝜀 

∴ (II) holds. 

𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘  ≤ 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 + 𝑑 𝑥𝑛 𝑘 −1 , 𝑥𝑚 𝑘   

                            ≤ 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 + 𝑑 𝑥𝑛 𝑘 −1 , 𝑥𝑚 𝑘 −1 + 𝑑 𝑥𝑚 𝑘 −1, 𝑥𝑚 𝑘   

𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘  ≤ 𝑑 𝑦𝑛 𝑘 , 𝑦𝑛 𝑘 −1 + 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘   

                            ≤ 𝑑 𝑦𝑛 𝑘 , 𝑦𝑛 𝑘 −1 + 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1 + 𝑑 𝑦𝑚 𝑘 −1, 𝑦𝑚 𝑘   

∴ max 𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘  , 𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘   ≤ max 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘   + 

                                                                                        max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘  , 𝑑 𝑦𝑛 𝑘 −1 , 𝑦𝑚 𝑘    

≤ max 𝑑 𝑥𝑛 𝑘 , 𝑥𝑛 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 , 𝑦𝑛 𝑘 −1  + max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  + 

                                                                                          max 𝑑 𝑥𝑚 𝑘 −1, 𝑥𝑚 𝑘  , 𝑑 𝑦𝑚 𝑘 −1 , 𝑦𝑚 𝑘    

On letting 𝑘 → ∞, from (I), (II), we get (III).  ∵  𝜀 ≤ 0 + lim max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘  , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘    ≤ 𝜀  

Now, we have 𝜀 ≤ lim inf max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1    

                            ≤ lim sup max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  = 𝜀 

∴  lim inf max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1  = 𝜀  

Since 𝑥𝑛 𝑘 −1 ≥ 𝑥𝑚 𝑘 −1 and 𝑦𝑛 𝑘 −1 ≤ 𝑦𝑚 𝑘 −1, from (5), we get 

𝜑  𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘   = 𝜑  𝑑  𝐹 𝑥𝑛 𝑘 −1, 𝑦𝑛 𝑘 −1 , 𝐹 𝑥𝑚 𝑘 −1 , 𝑦𝑚 𝑘 −1    

≤ 𝛽  
𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 + 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1 

2
  𝜑 max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1    

                                                                                                                                                               …….    (20) 

Similarly  𝜑  𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘   = 𝜑  𝑑  𝐹 𝑦𝑛 𝑘 −1 , 𝑥𝑚 𝑘 −1 , 𝐹 𝑦𝑛 𝑘 −1, 𝑥𝑛 𝑘 −1    

≤ 𝛽  
𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 + 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1 

2
  𝜑 max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1    

                                                                                                                                                              ……..     (21) 

From (20) and (21), we get   𝜑 𝑠𝑘  ≤  𝛽 𝑞𝑘 . 𝜑(𝑝𝑘) where 

 𝑠𝑘 = max 𝑑 𝑥𝑛 𝑘 , 𝑥𝑚 𝑘  , 𝑑 𝑦𝑛 𝑘 , 𝑦𝑚 𝑘     and  𝑞𝑘 =
𝑑 𝑥𝑛 𝑘 −1 ,𝑥𝑚 𝑘 −1 +𝑑 𝑦𝑛 𝑘 −1 ,𝑦𝑚 𝑘 −1 

2
 

 𝑝𝑘 = max 𝑑 𝑥𝑛 𝑘 −1, 𝑥𝑚 𝑘 −1 , 𝑑 𝑦𝑛 𝑘 −1, 𝑦𝑚 𝑘 −1   

Now, 𝛽 𝑞𝑘 → 1 ⇒ 𝑞𝑘 → 0  (by hypothesis) 

                                  ⇒ 𝑝𝑘 → 0  𝑎𝑠  𝑘 → ∞  ⇒ 𝜀 = 0  by (16) , a contradiction. 

∴  lim
𝑘→∞

𝛽(𝑞𝑘) ≠ 1 

∴  ∃ a positive integer 𝑁 and 𝛿 ∈ (0,1) such that 𝛽 𝑞𝑘 < 𝛿 for 𝑘 ≥ 𝑁                                                      …. (22) 

∴  𝜑 𝜀 < 𝜑 𝑠𝑘 ≤ 𝛽 𝑞𝑘  𝜑(𝑝𝑘)                                                                                                                …..  (23) 
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From (22), we have 𝜑 𝜀 < 𝜑 𝑠𝑘 < 𝛿𝜑(𝑝𝑘) < 𝛿𝜑(𝜀 + 𝜂) for a given 𝜂 > 0 and large 𝑘. 

𝜑 𝜀 ≤ 𝜑 𝜀 + 0 < 𝜑(𝑠𝑘) < 𝛿𝜑(𝜀 + 𝜂) 

This being true for every 𝜂 > 0 follows that 0 ≤ 𝜑 𝜀 < 𝜑 𝜀 + 0 < 𝛿𝜑(𝜀 + 0) 

∴ 0 ≤ 𝜑 𝜀 < 𝜑 𝜀 + 0 = 0 (∵ 0 < 𝛿 < 1) 

∴  𝜑 𝜀 = 0 ⇒  𝜀 = 0, a contradiction. 

Hence both  𝑥𝑛   𝑎𝑛𝑑  𝑦𝑛   are Cauchy sequences. 

 

Theorem 3.2: In addition to the hypothesis of Theorem 3.1, suppose that (𝑋, 𝑑) is complete and either (a) 𝐹 is 

continuous or (ii) 𝑋 has the following properties: 

(a) If  𝑥𝑛  is a non-decreasing sequence in 𝑋 with 𝑥𝑛 → 𝑥, then 𝑥𝑛 ≤ 𝑥 ∀ 𝑛 ∈ 𝕫+ 

(b) If  𝑦𝑛  is a non- increasing sequence in 𝑋 with 𝑦𝑛 → 𝑦, then 𝑦𝑛 ≥ 𝑦 ∀ 𝑛 ∈ 𝕫+ 

Then 𝐹 has a coupled fixed point in 𝑋. i.e. ∃ 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 = 𝐹 𝑥, 𝑦  and 𝑦 = 𝐹 𝑦, 𝑥 . 
 

Proof: Let the sequences  𝑥𝑛   and  𝑦𝑛   be as defined in (6) of Theorem 3.1. Then from Theorem 3.1, both the 

sequences  𝑥𝑛   and  𝑦𝑛   are Cauchy. Since (𝑋, 𝑑) is complete, ∃ 𝑥, 𝑦 ∈ 𝑋 such that 

lim𝑛→∞ 𝑥𝑛 = 𝑥 𝑎𝑛𝑑 lim𝑛→∞ 𝑦𝑛 = 𝑦. 

(a) Suppose 𝐹 is continuous. Then it follows that  

𝑥 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝐹 𝑥𝑛−1, 𝑦𝑛−1 = 𝐹  lim
𝑛→∞

𝑥𝑛−1 , lim
𝑛→∞

𝑦𝑛−1 = 𝐹(𝑥, 𝑦) 

𝑦 = lim𝑛→∞ 𝑦𝑛 = lim𝑛→∞ 𝐹 𝑦𝑛−1, 𝑥𝑛−1 = 𝐹 lim𝑛→∞ 𝑦𝑛−1 , lim𝑛→∞ 𝑥𝑛−1 = 𝐹(𝑦, 𝑥)  

Thus (𝑥, 𝑦) is a coupled fixed point of 𝐹 in 𝑋. 

(b) Suppose that 𝑋 has the properties (i) and (ii). Let 𝜀 > 0. Since lim𝑛→∞ 𝑥𝑛 = 𝑥 and lim𝑛→∞ 𝑦𝑛 = 𝑦, ∃ a 

positive integer 𝑁 such that 𝑑(𝑥, 𝑥𝑛) < 𝜀 and 𝑑 𝑦, 𝑦𝑛 < 𝜀  ∀ 𝑛 ≥ 𝑁. 

Since 𝑥𝑛 ≤ 𝑥 and 𝑦𝑛 ≥ 𝑦, ∀ 𝑛, from (5), we have  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑥𝑛 , 𝑦𝑛)  ≤ 𝛽  
𝑑 𝑥, 𝑥𝑛 + 𝑑(𝑦, 𝑦𝑛)

2
 𝜑 max 𝑑 𝑥, 𝑥𝑛 , 𝑑(𝑦, 𝑦𝑛)   

                                          

= 0  𝑖𝑓  𝛽  
𝑑 𝑥,𝑥𝑛  +𝑑(𝑦,𝑦𝑛 )

2
 = 0  𝑜𝑟  𝜑 max 𝑑 𝑥, 𝑥𝑛 , 𝑑(𝑦, 𝑦𝑛)  = 0             

<  𝜑 max 𝑑 𝑥, 𝑥𝑛 , 𝑑(𝑦, 𝑦𝑛)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

≤ 𝜑 𝜀                                                   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≥ 𝑁                                             

  

∴  𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑥𝑛 , 𝑦𝑛) < 𝜀 for all 𝑛 ≥ 𝑁 (∵  𝜑 is increasing) 

∴  𝐹(𝑥𝑛 , 𝑦𝑛) → 𝐹(𝑥, 𝑦). But 𝐹 𝑥𝑛 , 𝑦𝑛 = 𝑥𝑛+1 → 𝑥 𝑎𝑠 𝑛 → ∞ 

∴ 𝑥 = 𝐹(𝑥, 𝑦)                                                                                                                                                ….. (24) 

Again from (5), we have  

𝜑  𝑑 𝐹 𝑦, 𝑥 , 𝐹 𝑦𝑛 , 𝑥𝑛   = 𝜑 𝑑 𝐹 𝑦𝑛 , 𝑥𝑛 , 𝐹(𝑦, 𝑥)   

≤ 𝛽  
𝑑 𝑦𝑛 , 𝑦 + 𝑑(𝑥𝑛 , 𝑥)

2
 𝜑 max 𝑑 𝑦𝑛 , 𝑦 , 𝑑(𝑥𝑛 , 𝑥)   

 

= 0  𝑖𝑓   𝛽  
𝑑 𝑦𝑛 ,𝑦 +𝑑(𝑥𝑛 ,𝑥)

2
 = 0  𝑜𝑟  𝜑 max 𝑑 𝑦𝑛 , 𝑦 , 𝑑(𝑥𝑛 , 𝑥)  = 0  

<  𝜑 max 𝑑 𝑦𝑛 , 𝑦 , 𝑑(𝑥𝑛 , 𝑥)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

< 𝜑 𝜀                                          𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≥ 𝑁                                             

   

∴  𝑑 𝐹 𝑦, 𝑥 , 𝐹 𝑦𝑛 , 𝑥𝑛  < 𝜀  ∀ 𝑛 ≥ 𝑁 (∵  𝜑 is increasing) 

∴  𝐹 𝑦𝑛 , 𝑥𝑛 → 𝐹(𝑥, 𝑦). But 𝐹 𝑦𝑛 , 𝑥𝑛 = 𝑦𝑛+1 → 𝑦  𝑎𝑠 𝑛 → ∞ 

∴ 𝑦 = 𝐹 𝑦, 𝑥                                                                                                                                                ….. (25) 

∴ (24) and (25) shows that (𝑥, 𝑦) is a coupled fixed point for 𝐹 in 𝑋. 

 

Lemma 3.3: Let (𝑋, ≤) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete 

metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed monotone property on 𝑋. Suppose there exists 

an altering distance function 𝜑 ∈ Ф and 𝛽 ∈ 𝑆 such that  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣)  ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
 𝜑 max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)                                                            … (5)  

for 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 whenever  𝑥, 𝑦  and (𝑢, 𝑣) are comparable. 

Suppose (𝑥, 𝑦) is a coupled fixed point of 𝐹. i.e. 𝑥 = 𝐹(𝑥, 𝑦) or 𝑦 = 𝐹(𝑦, 𝑥). Let (𝑢, 𝑣) ∈ 𝑋 × 𝑋 such that 

 𝑢, 𝑣 ≤1 (𝑥, 𝑦)                                                                                                                                              …  (26) 

Construct the sequences  𝑢𝑛   and  𝑣𝑛   by 𝑢0 = 𝑢, 𝑣0 = 𝑣, 𝑢𝑛+1 = 𝐹 𝑢𝑛 , 𝑣𝑛 , 𝑣𝑛+1 = 𝐹(𝑣𝑛 , 𝑢𝑛). 

Then 𝑢𝑛 → 𝑥 and 𝑣𝑛 → 𝑦 as 𝑛 → ∞. 
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Proof: First we prove that  𝑢𝑛 , 𝑣𝑛 ≤1 (𝑥, 𝑦) for all 𝑛 = 0, 1, 2, …. 
i.e 𝑥 ≥ 𝑢𝑛  and 𝑦 ≥ 𝑣𝑛  for all 𝑛 = 1, 2, …                                                                                                           (27) 

From (26), 𝑥 ≥ 𝑢 = 𝑢0 and 𝑦 ≤ 𝑣 = 𝑣𝑜   

∴   (27) is true for 𝑛 = 0. 

Assume that (27) is true for some positive integer 𝑛. 

Hence 𝑢𝑛+1 = 𝐹 𝑢𝑛 , 𝑣𝑛 ≤ 𝐹 𝑥, 𝑦 = 𝑥 and 𝑣𝑛+1 = 𝐹 𝑣𝑛 , 𝑢𝑛 ≥ 𝐹 𝑦, 𝑥 = 𝑦 

Therefore by mathematical induction (27) is true for all 𝑛 = 1, 2, … 

Since 𝑥 ≥ 𝑢𝑛−1 and 𝑦 ≤ 𝑣𝑛−1 and from (5), we have, 

𝜑 𝑑 𝑥, 𝑢𝑛  = 𝜑 𝑑(𝐹 𝑥, 𝑦 , 𝐹(𝑢𝑛−1, 𝑣𝑛−1            ≤ 𝛽  
𝑑 𝑥,𝑢𝑛−1 +𝑑(𝑦 ,𝑣𝑛−1)

2
 𝜑 max 𝑑 𝑥, 𝑢𝑛−1 , 𝑑(𝑦, 𝑣𝑛−1)   

and  𝜑 𝑑 𝑦, 𝑣𝑛  = 𝜑  𝑑(𝐹 𝑦, 𝑥 , 𝐹(𝑣𝑛−1, 𝑢𝑛−1 )  

                             ≤ 𝛽  
𝑑 𝑦 ,𝑣𝑛−1 +𝑑 𝑥,𝑢𝑛−1 

2
 𝜑 max 𝑑 𝑦, 𝑣𝑛−1 + 𝑑 𝑥, 𝑢𝑛−1    

∴ max 𝜑 𝑑 𝑥, 𝑢𝑛  , 𝜑 𝑑 𝑦, 𝑣𝑛   ≤ 

𝛽  
𝑑 𝑦 ,𝑣𝑛−1 +𝑑 𝑥,𝑢𝑛−1 

2
 𝜑 max 𝑑 𝑦, 𝑣𝑛−1 , 𝑑 𝑥, 𝑢𝑛−1                                                                               ….  (28) 

Case (i): 𝜑 max 𝑑 𝑥, 𝑢𝑁−1 , 𝑑 𝑦, 𝑣𝑁−1   = 0  for some 𝑁 

Then 𝑥 = 𝑢𝑁−1 and 𝑦 = 𝑣𝑁−1 and from (28), we get 𝑥 = 𝑢𝑁  and 𝑦 = 𝑣𝑁 . 
Similarly 𝑥 = 𝑢𝑛  or 𝑦 = 𝑣𝑛  for 𝑛 ≥ 𝑁. 

∴  𝑢𝑛 → 𝑥 and 𝑣𝑛 → 𝑦 as 𝑛 → ∞. 

Case (ii): 𝜑 max 𝑑 𝑥, 𝑢𝑛−1 , 𝑑 𝑦, 𝑣𝑛−1   = 0  for all 𝑛 ≥ 1. 

Then from (28), we have max φ 𝑑 𝑥, 𝑢𝑛  𝜑 𝑑 𝑦, 𝑣𝑛   ≤ φ 𝑚𝑎𝑥  𝑑 𝑥, 𝑢𝑛−1 , 𝑑 𝑦, 𝑣𝑛−1    

Since 𝜑 is increasing, we get max 𝑑 𝑥, 𝑢𝑛 , 𝑑 𝑦, 𝑣𝑛  ≤ max 𝑑 𝑥, 𝑢𝑛−1 , 𝑑 𝑦, 𝑣𝑛−1   

i.e. max 𝑑 𝑥, 𝑢𝑛 , 𝑑 𝑦, 𝑣𝑛   is a deceasing sequence of reals and hence deceases to 𝑟 (say), 𝑟 ≥ 0. 

i.e. lim𝑛→∞ max 𝑑 𝑥, 𝑢𝑛 , 𝑑 𝑦, 𝑣𝑛  = 𝑟. 

Again from (28), we have  

𝜑 𝑟 ≤ 𝜑 max 𝑑 𝑥, 𝑢𝑛 , 𝑑 𝑦, 𝑣𝑛   ≤ 

𝛽  
𝑑 𝑥,𝑢𝑛−1 +𝑑 𝑦,𝑣𝑛−1 

2
  𝜑 max 𝑑 𝑥, 𝑢𝑛−1 , 𝑑 𝑦, 𝑣𝑛−1                                                                              …   (29) 

Let 𝑠𝑛 = max 𝑑 𝑥, 𝑢𝑛 , 𝑑 𝑦, 𝑣𝑛  , 𝑞𝑛 =
𝑑 𝑥,𝑢𝑛−1 +𝑑 𝑦 ,𝑣𝑛−1 

2
 

Then max 𝑑 𝑥, 𝑢𝑛−1 , 𝑑 𝑦, 𝑣𝑛−1  = 𝑠𝑛−1 

∴  𝜑 𝑟 ≤ 𝜑 𝑠𝑛 ≤ 𝛽 𝑞𝑛  𝜑(𝑠𝑛−1) 

Suppose 𝑟 > 0.  Now, 𝛽 𝑞𝑘 → 1 ⇒ 𝑞𝑛 → 0  (by hypothesis) 

                                  ⇒ 𝑠𝑛 → 0  𝑎𝑠 𝑛 → ∞  ⇒ 𝑟 = 0,   ∵  𝑠𝑛−1 → 𝑠 , a contradiction. 

∴  lim
𝑘→∞

𝛽(𝑞𝑛) ≠ 1 

∴  ∃ a positive integer 𝑁 and 𝛿 ∈ (0,1) such that 𝛽 𝑞𝑛 < 𝛿 for 𝑛 ≥ 𝑁  

∴  0 < 𝜑 𝑟 ≤ 𝜑 𝑠𝑛 < 𝛿𝜑 𝑠𝑛−1 ≤ 𝛿𝜑(𝑟 + 𝜂) for a given 𝜂 > 0 and large 𝑛. 

∴  𝜑 𝑟 ≤ 𝜑 𝑟 + 0 ≤ 𝜑 𝑠𝑛 < 𝛿𝜑(𝑟 + 𝜂) 

∴  0 < 𝜑 𝑟 ≤ 𝜑 𝑟 + 0 ≤ 𝛿𝜑 𝑟 + 0 < 𝜑 𝑟 + 0   ∵ 0 < 𝛿 < 1 , a contradiction. 

∴ 𝑟 = 0. Therefore 𝑑(𝑥, 𝑢𝑛) → 0 and 𝑑(𝑦, 𝑣𝑛) → 0 as 𝑛 → ∞. 

∴  𝑢𝑛 → 𝑥 and 𝑣𝑛 → 𝑦 as 𝑛 → ∞. 

 

Lemma 3.4: Let (𝑋, ≤) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete 

metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed monotone property on 𝑋. Suppose there exists 

an altering distance function 𝜑 ∈ Ф and 𝛽 ∈ 𝑆 such that  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣)  ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
 𝜑 max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)   … (5) for 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 whenever  𝑥, 𝑦  

and (𝑢, 𝑣) are comparable. 

Suppose (𝑥, 𝑦) is a coupled fixed point of 𝐹. i.e. 𝑥 = 𝐹(𝑥, 𝑦) or 𝑦 = 𝐹(𝑦, 𝑥). Let (𝑢, 𝑣) ∈ 𝑋 × 𝑋 such that 

 𝑥, 𝑦 ≤1 (𝑢, 𝑣)   …  (30) 

Construct the sequences  𝑢𝑛   and  𝑣𝑛   by 𝑢0 = 𝑢, 𝑣0 = 𝑣, 𝑢𝑛+1 = 𝐹 𝑢𝑛 , 𝑣𝑛 , 𝑣𝑛+1 = 𝐹(𝑣𝑛 , 𝑢𝑛). 

Then 𝑢𝑛 → 𝑥 and 𝑣𝑛 → 𝑦 as 𝑛 → ∞. 

The proof is similar to that of Lemma 3.3. 

 

Definition 3.5: Let (𝑢, 𝑣) ∈ 𝑋 × 𝑋. Define the sequences  𝑥𝑛   𝑎𝑛𝑑  𝑦𝑛   as follows:  

𝑢0 = 𝑢, 𝑣0 = 𝑣, 𝑢1 = 𝐹 𝑢0, 𝑣0  and 𝑢𝑛+1 = 𝐹(𝑢𝑛 , 𝑣𝑛) for all 𝑛 ≥ 1 

𝑣1 = 𝐹 𝑣0 , 𝑢0  and 𝑣𝑛+1 = 𝐹(𝑣𝑛 , 𝑢𝑛) for all 𝑛 ≥ 1 
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Then the sequence   𝑢𝑛 , 𝑣𝑛   is called the coupled iterative sequence of  𝑢, 𝑣 . 
 

Theorem 3.6: Let (𝑋, ≤) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a metric 

space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a continuous map having the mixed monotone property on 𝑋. Suppose there exists 

an altering distance function 𝜑 ∈ Ф and 𝛽 ∈ 𝑆 such that  

𝜑 𝑑 𝐹 𝑥, 𝑦 , 𝐹(𝑢, 𝑣)  ≤ 𝛽  
𝑑 𝑥,𝑢 +𝑑(𝑦,𝑣)

2
 𝜑 max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)   … (5)  

for 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 whenever  𝑥, 𝑦  and (𝑢, 𝑣) are comparable. 

Suppose (𝑥, 𝑦) is a coupled fixed point of 𝐹. i.e. 𝑥 = 𝐹(𝑥, 𝑦) or 𝑦 = 𝐹(𝑦, 𝑥). Let (𝑢, 𝑣) ∈ 𝑋 × 𝑋 such that 

 𝑢, 𝑣  𝑎𝑛𝑑 (𝑥, 𝑦) are comparable. Let   𝑢𝑛 , 𝑣𝑛   be the coupled iterative sequence of  𝑢, 𝑣 . 
Then 𝑢𝑛 → 𝑥 𝑎𝑛𝑑 𝑣𝑛 → 𝑦. 

 

Proof: Case(i): If  𝑢, 𝑣 ≤ (𝑥, 𝑦), then result follows from Lemma 3.3. 

Case(ii): If 𝑥, 𝑦) ≤ (𝑢, 𝑣), then the result follows from Lemma 3.4. 

 

Theorem 3.7: Suppose the hypothesis of Theorem 3.2 holds. Then there does not exists a pair (𝑢, 𝑣) ∈ 𝑋 × 𝑋 

such that (𝑢, 𝑣) is comparable to two distinct coupled fixed points of 𝐹. 

 

Proof: Suppose (𝑥, 𝑦) and (𝑥 ′ , 𝑦′) are two coupled fixed points of 𝐹. Let (𝑢, 𝑣) be comparable with (𝑥, 𝑦) and 

(𝑥 ′ , 𝑦′). Let   𝑢𝑛 , 𝑣𝑛   be the coupled iterative sequence of (𝑢, 𝑣).  

Case(i): Suppose  𝑢, 𝑣 ≤1 (𝑥, 𝑦) and  𝑢, 𝑣 ≤1 (𝑥 ′ , 𝑦′). 

Then by Lemma 3.3, 𝑢𝑛 → 𝑥 𝑎𝑛𝑑 𝑣𝑛 → 𝑦 and also 𝑢𝑛 → 𝑥′ 𝑎𝑛𝑑 𝑣𝑛 → 𝑦′. 
∴ 𝑥 = 𝑥′ and 𝑦 = 𝑦′. Consequently  𝑥, 𝑦 = (𝑥 ′ , 𝑦′). 

 Case(ii): Suppose  𝑥, 𝑦 ≤1 (𝑢, 𝑣) and  𝑥 ′ , 𝑦′ ≤1 (𝑢, 𝑣). 

Then by Lemma 3.4, 𝑢𝑛 → 𝑥 𝑎𝑛𝑑 𝑣𝑛 → 𝑦 and also 𝑢𝑛 → 𝑥′ 𝑎𝑛𝑑 𝑣𝑛 → 𝑦′. 
∴ 𝑥 = 𝑥′ and 𝑦 = 𝑦′. Consequently  𝑥, 𝑦 = (𝑥 ′ , 𝑦′). 

Case(iii): Suppose (𝑥, 𝑦) ≤1  𝑢, 𝑣 ≤1 (𝑥 ′ , 𝑦′). 

Then by Lemma 3.4, 𝑢𝑛 → 𝑥 𝑎𝑛𝑑 𝑣𝑛 → 𝑦 and also 𝑢𝑛 → 𝑥′ 𝑎𝑛𝑑 𝑣𝑛 → 𝑦′. 
∴ 𝑥 = 𝑥′ and 𝑦 = 𝑦′. Consequently  𝑥, 𝑦 = (𝑥 ′ , 𝑦′). 

Case(iv): Suppose (𝑥 ′ , 𝑦′) ≤1  𝑢, 𝑣 ≤1 (𝑥, 𝑦). 

In this case also  𝑥, 𝑦 = (𝑥 ′ , 𝑦′) as in Case (iii). 

Hence  𝑥, 𝑦  and (𝑥 ′ , 𝑦′) cannot be distinct, a contradiction. 

 

Theorem 3.8: Suppose the hypothesis of Theorem 3.2 holds. Further assume that  

(H): For  𝑥, 𝑦 , (𝑧, 𝑡) ∈ 𝑋 × 𝑋 there exists (𝑢, 𝑣) ∈ 𝑋 × 𝑋 which is comparable to (𝑥, 𝑦) and (𝑧, 𝑡). Then 𝐹 has 

unique coupled fixed point. 

 

Proof: By Theorem 3.2, 𝐹 has a coupled fixed point (𝑥, 𝑦). 

Suppose (𝑥 ′ , 𝑦′) is also a coupled fixed point of 𝐹. 

Then by (H) there exists (𝑢, 𝑣) ∈ 𝑋 × 𝑋 which is comparable to (𝑥, 𝑦) and (𝑥 ′ , 𝑦′). 

Then by Theorem 3.7,  𝑥, 𝑦 = (𝑥 ′ , 𝑦′). 

Thus 𝐹 has unique coupled fixed point. 

 

Corollary 3.9: Suppose the hypothesis of Theorem 3.2 holds. Further assume that (𝑋, ≤) is a lattice. Then 𝐹 has 

a unique coupled fixed point. 

 

Proof: Since (𝑋, ≤) is a lattice, condition (H) holds.  

Consequently by Theorem 3.8, 𝐹 has a unique coupled fixed point. 

 

Note: If we replace the argument 
𝑑 𝑥,𝑢 +𝑑(𝑦 ,𝑣)

2
 in 𝛽 by  max 𝑑 𝑥, 𝑢 , 𝑑(𝑦, 𝑣)  still the results hold good. 

 

Conclusion: Under the hypothesis of Theorem 3.2, the fixed point set 𝔉 of 𝐹 decomposes the set 𝑋 into 

pointwise disjoint sets  𝑆𝑝  /𝑝 ∈ 𝔉  in the following way: 

For 𝑝 ∈ 𝔉, write 𝑆𝑝 =  𝑎 ∈ 𝑋: 𝑝 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑎   

Then (i) 𝑆𝑝 ≠ ∅, since 𝑝 ∈ 𝑆𝑝  

         (ii) 𝑆𝑝  and 𝑆𝑞  are disjoint whenever 𝑝, 𝑞 ∈ 𝔉 and 𝑝 ≠ 𝑞 
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        (iii) 𝑆 =  𝑆𝑝𝑝∈𝔉  may be a proper sub set of 𝑋  

in which case 𝑋 − 𝑆 does not contain any fixed point of 𝐹. 
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